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Abstract—This paper is concerned with the determination of the transient stress state at the site in a bent plate
where a through crack of finite length has appeared suddenly. Such a phenomenon can be easily visualized as
the type of damage caused by projectile penetration. Mindlin’s equations of flexural motion are used so that the
three natural boundary conditions can be satisfied on the crack surfaces whereas the approximate Kirchhoff
condition in the classical theory leads to unrealistic results near the crack. A set of dual integral equations is
derived for this problem and solved numerically. The moment intensity factor is found to increase monotonically
with time and is always lower than the static limit. Its amplitude is a function of the plate thickness to crack
length ratio. This is different from the in-plane stretching case where the dynamic stress-intensity factor rises
above the static limit very quickly before it decays.

INTRODUCTION

A possIBLE failure mode -of plate-like structures when subjected to ballistic impact is
penetration of the projectile accompanied by rapid crack propagation. Depending on the
speed of the projectile, the thickness of the target material, and other factors, the crack
may reach a subcritical length and arrest itself. In such a case, the problem may be modeled
by the sudden appearance of a through crack.

Transient stress analysis dealing with the state of affairs near the crack tip region has
been carried out by a number of past investigators. Their contributions are reviewed and
mentioned in [1, 2]. Among the problems solved are shear and dilatational waves passing
by a plane [3-5] or penny-shaped [6, 7] crack. The general conclusion is that the spatial
distribution of the dynamic stresses around the crack edge remained the same as the
static case while the amplitude of the local stress field varied with time reaching a peak
approximately 2030 per cent greater than the corresponding static value and subsequently
oscillating about that value. The problem of flexural waves scattering at a crack was solved
by Sih and Loeber [8] who considered only the steady state situation.

The present analysis is concerned with the effect of bending on the transient stresses
near the tip of the crack. The problem will be examined through the theory of flexural
motion of plates developed by Mindlin [9] in which the three physical boundary con-
ditions of applied bending moments and zero twisting moment and transverse shear stress
can be satisfied individually at the crack edge. The procedure will be to apply transform
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techniques to Mindlin’s equations of motion in order to obtain a set of dual integral
equations from which a numerical solution can be obtained.

EQUATIONS OF FLEXURAL MOTION OF PLATES

The assumptions on the displacement vector are that the in-plane components, u and
v, are linearly dependent on the out-of-plane z coordinate, and that the out-of-plane
component, w, is independent of z That is, the rectangular components of displacement
assume the form

ulx, y,z,t) = 2 {x, y, t)
vix, y, 2, 1) = zir,(x, y, 1) H

w(x, v, 2,8) = Yra(x, y, )

The functions ,, ¥, and y; are called plate-displacement components and are illus-
trated together with the general plate geometry in Fig. 1. The bending and twisting moments
and transverse shearing forces (per unit length) are defined, in terms of the stress com-
ponents, as

K2
MMy H) = [ (0no,m ez @

—hi2

k2

(0,,0,) = f (tas 7,0 dz @)

—h/2

Fic. 1. General plate geometry and displacements,

where # is the thickness of the plate. The plate-stress components just defined are shown
acting on the element of the plate in Fig. 2.

Through use of the stress—strain and constitutive equations of classical three-dimen-
sional elasticity, the following relations are obtained between the plate-stress and plate-
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F1G. 2. Moments and shearing forces on plate element.
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displacement components,

o)
0x dy
e ez, 2
yo 6y ox
RN
ny— 5 D(E‘f‘a;x) (4)
0. = |3 v
Qy =K #h(‘+l//2)

with v and u being Poisson’s ratio and the shear modulus respectively and where the
shear coefficient k2 assumes the value n?/12. The flexural rigidity of the plate, D, is given by
puh?
D= ——. 5
6(1—v) )
Making use of equations (1-4), the equations of motion of three-dimensional elasticity
theory may be converted to the following equations for plate-displacements.

('Wg,) _ ph® 2%y,

Bl:(l — V2, +(1 +v)a¢] — K2 h(l//1
2 ix

T 12 o

D 2 oo ays| ph® 2%y,

2[(1 VIV, +(1 V)ay:! K uh(l//z ) =1 a2

‘13w3
K2 uh(Vi3 +®)+q = ph Fe (6)
where
W Clpz
O =

ox ay @

The effect of the normal pressure g, will not be considered here and therefore g will be
set equal to zero. The parameter p is the mass density and V? is the Laplacian operator.
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FORMULATION OF PROBLEM

The specific problem to be considered here is that of sudden appearance of uniform
bending moment on the surface of a crack of length 2a lying on the x-axis of an infinite
plate (see Fig. 3). Since this problem is symmetric with respect to the x-axis, it will be
sufficient to consider only the region of the plate where y > 0. As is usual in problems of
this type where geometric singularities are involved, mixed boundary conditions are im-
posed on the x-axis. These conditions are

0,(x,0,1) =0 for 0<ixl<w
H, (x,0,t) =0 for 0<|xj < .
M(x,0,1) = —=MyH(t) for |x| <a

palx,0,0) =0 for |x > a

F1G. 3. Geometry of through crack in plate.

In addition, the condition on displacement at infinity is

m  [y(x, p, ), W00y, 0, W5(x, 1,1 = 0

x2+y2_,m

and the initial conditions are taken to be zero. The governing field equations for the
plate may now be solved subject to the preceding conditions.
Recall that the Laplace transform pair is

FHp) = L 10 exp(—pr) dt ©)

1
10 =5 |, 7 exptonap (10



Sudden appearance of a crack in a bent plate 1353

where the second integral is over the Bromwich [10] path. The result of applying equation
(9) to equation (6) is

D op* n

5[(1 —WVAT+(1 +V)E;] k| Yt + %) =yt (1)

D op* 0 h?

5[(1—v)w2w;+(1—v) & ] K h(n/zz "’;) =Sy (12)
K2 ph(V2y% + @*) = php*y%. (13)

Note that the reduction of the preceding equations to a set of homogeneous ordinary
differential equations necessitates the introduction of the Fourier cosine and sine trans-
forms. The Fourier cosine transform pair is

e ¢} 2 o
= f f(x) cos(ax) dx, flx) = ;J. F(2) cot(ax) da
0 0]
and the Fourier sine transform pair is

fla) = F £(x) sin(ax) dx, f(x) = 72? f ? (o) sin(ax) o
0 0

By noting the symmetry properties of the boundary conditions and by consideration
of equations (5), it is easily seen that i, and /5 are even in x and y, is odd in x. That is,

lpl(x’y’t): _‘/ll(_xuyyt)’ WZ(x’yst):lIIZ(—xuy?t)
l!’}(x’y’t) = ¢3(_x’ys [)~

Thus, the Fourier sine transform is applied to equation (11), and the Fourier cosine
transform is applied to equations (12) and (13) with the result

D . W ok, ; o -
(- N Lkl D =
2(1 v)82 12p+ o + ki uh|* — 2 ¥=0
Dt 0% [kt D . aw*
5(1+v) W—FD 3 2 2(l—v)ot + 12 uh| % —k uh =0 (14)
o B
K2 phofs ¥ + K ,uha\lJ2 uhﬁ\l’;—(azxzuh+phpz)\ll§ =0.

The preceding set of coupled ordinary differential equations may be solved in the
usual manner with the following result

<>

T = —af(e, p)o, — Daexp(—7,y)—a3(, p)o, — Daexp(—7,y)
—ai(o, p)y; exp(—73y)

Ut = —a¥(a, p)(o, — 1)y, exp(—7,y)—a3(@, p)(o,— 1)y, exp(—7y,y) (15)
—aa3(a, p) exp(—y;Y)
W% = af(a, p) exp(—7,y) + a¥(e, p) exp(—7,)
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where
7 = Ve +(Bi/ad)]
72 = /[0 +(B3/a)] (16)
73 = [o? +(B3/a)]
2 2 p2\p-2
(0,,0,) = 1—_'v(ﬁ2,ﬁ1)ﬂ3 (17)
and

o 2]

p? 1
2081, B3) = wi(h/a )2{ +12+[

7.[2 p 2
ﬁg:mmﬁu5ﬂ'”]

The quantity S stands for

and ), is the cut-off frequency

Wo = 763

>3

with ¢, = (u/p)? being the shear wave velocity in an infinite solid.

The expressions for the plate-displacement components simplify considerably through
introduction of the boundary conditions on @, and H_, in equation (8). That is, the
equations,

Xy

=0 for y=0,

0r = Kzuh(‘;; +y
cy

1 "l//* ’!w* (19)
_l=v 1oyt Y3\ _
HE = =5 D(@y ax)_o for y=0,
allow the functions a*(«, p) (i = 1, 2, 3) to be written
oy < D[ @
PP (g (Tl + B
o A S
e = G| g 20
aa® A*(a, p)

a3(a,p) = ——5—5—(1—v){o,—0))

(B2 -5
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where
filw) = (o + B3/a®) (1 —v)ta® + B1)°

21
flo) = (o + B3/a) H(1 - v)ola? + 37 .

The solution of the problem now depends on the evaluation of 4*(a, p). This may be
accomplished through application of the remaining two boundary conditions of equation
(8). The result is the foliowing set of dual integral equations:

EJ@ F(a, p)A*(a, p) cos(ox) da = %le <a

TJo
. (22)
f A*a, p) cos(ax)da = O|x| > a
0
where
1
Flo, p) = (B%_ﬂ%)[(l—al)f;(f)—(l—az)fz(f‘)
—(1=v)(0,—0y)d?a’ /[ +(Bs/a)2]:| (23)

The procedure by which the dual integral equations are reduced to the solution of a
Fredholm integral equation is the same as that used for the in-plane case [2] and will not
be repeated here. The result of this procedure is that A*(«, p) may be written

2M 1
T o J-(D*('f,P)Jo(Sﬁa)\/(é)di (24)

AP o= ),

where J, 1s the zero-order Bessel function of the first kind and ®*(¢, p) is the solution to
the following Fredholm integral equation:

£ p)— fcb*n, K(Endy = J@),¢ < 1 (25)

whose kernel being symmetric in & and 7 is

2,/(&n)

KEn = 520

f of (5. pM ofsno(s8) ds (26)
with

aF(s/a, p)
flsp) = 31—V ===,

As noted previously [2] rapid convergence of the infinite integral is facilitated if a
function g(s, p) is defined to be

H
2s,p) = f(s, p)+2 T E?



1356 G. T. EmBLey and G. C. S
where

= W{[} +2v+ 3] (p?/wd) + 4}
{(1=v)[5v* + 2v + 11(p/wo)*[(p/wo)* — 125]+ 8[(p/ewo) + 117}

E* =
16(1 —v)(h/a)*S*H

Then, noting that
* Hs . .
. mJO(SU)Jo(Sé) ds = HI(EEK ((En), 0<éxy

the kernel becomes

2,/(&m)
(1-v%

K& m = {— Hfo(éE)Ko(nEHf | sg(s, pMolsmdo(s) dS}» 0<i<n (27)
0

TIME DEPENDENT MOMENT DISTRIBUTION

The solution of the Fredholm integral equation for ®* completely determines the
Laplace transforms of the plate-stress components. Since the three components of moment
are expected to possess a square root singularity near the crack tip these will be discussed
in detail. Making use of equations (14) and (15) and the definition of the Fourier transform
pairs, these may be written

2 fre}
M:=_D f o, — D vy; —la¥(s, pyexp(—7,y) +(o, — Dvys — *lai(s, p) exp(—7y,))
0
— (1 —=v)yso exp( — y3¥)] cos(ax) dot

2 e el
My =_D L [o, = 1)y —ve*lat(s, p) exp(—7,y)+ (0, — 1) [v3 —votlak(s, p) exp(—7,)

{1 — V). — 72y}l c yd
(1 —v)p;aexp( — y3¥)] cos(ax) da (28)

1—v) [
HY = L;;*Df [2(0; — Doy,at(s, p) exp(—y, ¥)+ 2o, — Day,a¥(s, p) exp(—7y,)
o

+(y3 +o?)a¥(s, p) exp( —y3y)] sin(ax) do.

In Ref. [2], the inverse Laplace transforms of the stress expressions were obtained
through application of the Cagniard-DeHoop inversion technique. However, as this is
not possible for the present case, an alternative technique of asymptotic expansion of the
stress-field near the crack tip before inversion will be used [7]. Observe that the infinite
integrals in equations (28) are convergent everywhere except at the singular points, ie.,
the crack tips. To obtain the solution near the crack tip, it is necessary to evaluate the
unbounded portions of these integrals in the neighborhood of the singular points. Noting
that the integrands are finite and continuous for any given value of s, the divergence of the
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integrals near the crack tip must be due to behavior as s » 0. Hence, the terms that
give rise to unbounded plate-stresses correspond to those parts of the integrand that are
dominant for large values of s, and they will be isolated in the work to follow.

If the expression for A*(«, p) is integrated by parts so that

*(S, p)
NS
it can be seen that the singular part of the solution depends only on the first term on the

right. Then making use of equations (20), the integrands of equations (28) may be ex-
panded for large s, such that the result of retaining only the highest order term is

naM
pD(1 —v?)s

(29)

'd
A*(s,p) = [@*(1, p)J,(sa)—- f EE[ ]Jl(saé)\/(f)dé],

M¥ = Moa(D*(l,p)f (sy—1) exp(—sy)J,(sa) cos(sx)ds+. ..
0

M3 = = Moa®*(1, p) f (sy+ 1) exp(— sy}, (sa) cos(sx) ds +. . (30)
0
D*(1, “ .
H¥ = —Mga ( g)f sy exp(—sy)J,(sa) sin(sx) ds+. ..
0

Making use of well-known Bessel integral identities and the Laplace inversion theorem,
the following results are obtained for the plate stresses near the crack tip:

Mgy ja

x =

M

y =

Xy

_ My /a

- J@n

J(2r)

J@r)
Mg a

N(t) cos

N(t) cos

N(t) cos

ool
sl
ol

(31

where the polar coordinates r and 8 are shown in Fig. 3 and the function N(¢) is the in-
verse Laplace transform of [@*(1, p)/p]. The moments near the crack tip possess the inverse
square-root of r singularity. Then, following Sih and Loeber [8], a dynamic moment
intensity factor may be defined here as

= Mo/(a)N(1)

and the plate-stresses near the crack tip may be written

M, = \Ij(lz(i))cos g {l—sm(—) sin (?)} +...

Myz\lj(lz(gcos g {1+sm( )s1 (ézg}
_ K9 6\ . (0

xy—\/(zr)cos 5] sin|5) cos 2 +...
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where the expressions for the shear resultants Q, and Q, are not presented as they are
finite everywhere. The preceding expressions for the moments are identical to the ex-
pressions obtained for ¢,, 6, and 7, in the in-plane extension problem with the only
difference depending on the behavior of K {t).

In order to evaluate K ,(¢) it is necessary first to numerically solve the Fredholm integral
equation (25) for ®*(&, p). The results of this are presented in Fig. 4 where values of ®*(1, p)
as a function of (¢,/pa) are plotted for two values of (h/a) and for Poisson’s ratio equal to
0-3. Since only the numerical values of [®*(1, p)/p] are obtained, the inverse Laplace
transform of this function, N(t), must be obtained numerically.

1 ] ! |
[} 10 20 30 40 50

NORMALIZED WAVE NUMBER X=g/op

F1G. 4. Solutions to Fredholm integral equation.

(N /my /o

i 4 i

1
1.0 20 30 4.0 5.0
NORMALIZED TIME ¢,t/a

NORMALIZED MOMENT INTENSITY FACTOR k

F1G. 5. Moment intensity factor as function of time,
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The behavior of K,(¢) that may thus be described is quite different from the case of
uniform in-plane extension. Referring to Fig. 5, when the ratio of plate thickness to crack
length, h/a, is equal to one, the dynamic moment-intensity factor asymptotically ap-
proaches the static value of K,(f) = 0-75 M, /a with little or no oscillation about that
value. It should be noted that this result is in agreement with Sih and Loeber [8] who, for
the same geometric and material parameters, showed that the steady-state dynamic
moment-intensity factor decreases from the static value as the frequency increases. Figure 5
also shows that K () has the same behavior for a value of h/a equal to 0-5. The static limit
in this case is 070 M,./a which is in agreement with the result reported by Hartranft
and Sih [11].
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AbcTrpakr—Pabora 3aHnMaeTca onpeneseHMeM HECTALMOHAPHOTO HANIPSDKEHHOIO COCTOAHUS B 3TOM MECTE
u3rnbaeMoil NNacTUHKK, rie MOABKHIIACh BHE3AMHO TPELUMHA HACKBO3b, KOHEeYHOH Iiuubl. Takoe sBnexne
MOXHO JIETKO MBbICJCHHO IMPEACTaBUTL cebe B Ka4eCTBE MOBPEXKAEHWS, BbI3LIBAHHOIO MPOHUKHOBEHUEM
cHapaga. Mcnonbiyrores ypaBHenuss MUHAAMHA A1 M3rnOIOro ABMXKEHUS M, 3aTEM, YAOBJIETBOPAOTCS
TPME €CTECTBEHHbIM I'PAHUYHBIM YCIOBHAM Ha MOBEPXHOCTAX TPELUMHBI, TOTAA KAK NPUGIHIKEHHOE YCIOBUE
Kupxrodda npuBoauT K HEPEaTUCTUHECKHM pe3ynbTaTtam OM3M TpelluHbl. JJisl 3TOM 334244 BBIBOAMTCS
CcMCTEMA JyalibHbIX MHTETPAJbHBIX YPABHEHMH W PELIAaeTCs YUCIEHHO. YKaeaHo, 4To GAKTOP WHTEHCHB-
HOCTH MOMEHTA YBESMYMBAETCA MOHOTOHHO BO BPEMEHM M BCEr/a SBJISAETCH HU3WIMM (10 CPABHEHHIO CO
cTaTuveckuM mipeieiom. Ero aMmutyna okasbisaetcs QyHKuMeih COOTHOLUEHHS TOJILLKMHBI TUIACTHHKH K
IJIMHE TPELMHbl. DTO SBJIEHUE OTJIMYACTCH OT CJly4as PAaCTSXEHUs B IHIOCKOCTH, B KOTOpoM Gaktop
WHTEHCUBHOCTH AMHAMMYECKUX HAMPAXKEHUH NOBbILLAETCA OYEHb OBICTPO HAall CTATHHECKMI NTpeaen, paHblue
pa3zpyLieHus.



